細胞内輸送を介した植物の多様な環境応答機構に関する研究

岩手大学 21世紀 COE プログラム 植物応答 植葉 文人

移動手段をもたない植物にとって、自身を取り巻く環境を感知して生長を制御することは、生存するうえで最も重要な応答の一つである。こうした応答は、センサー分子によるシグナルの受容と、その下流で起こる遺伝子発現の調節、さらには遺伝子にコードされるタンパク質の機能発現により達成されている。筆者は、光や温度に応答して植物細胞内で起こる一連の反応を解析することで、細胞内輸送を介した植物の多様な環境応答機構に関する新しい知見を得た。以下にその内容を紹介する。

1. 小胞輸送を介した光による茎伸長制御機構に関する研究

植物の生長制御のうち、最も重要な反応の一つが光形態形成である。このときに起こる代表的な反応が「茎伸長の停止」と「葉緑素分化による光合成機能の獲得」である（図 1）。言い換えれば、光がない場所では植物は「もやし」のように盛んに茎を伸長させて光を探し続ける。このような性質は、自然界で育る植物が光合成に適さない不良環境を感知し、他の植物が作る日陰から逃れる反応（Shade avoidance 反応）にも利用されている。したがって、植物がどのように光環境に応じて茎伸長を制御しているか理解することは、植物の生存戦略の一端を理解する上で不可欠である。

こうした背景を踏まえ、筆者は暗所の茎伸長部位で特異的に発現する輸送因子 PRA2 遺伝子の発現制御機構と細胞内局在の解析を行った。まず、PRA2 遺伝子のプロモーター領域を解析し、光抑制にかかわる転写制御配列 DE1 を同定し、DE1 がさまざまな光感受体からシグナルを受け取ることを明らかにした。また、酵母ワンハイブリッド法により DE1 に結合する転写因子 DF1 をクローニングした。モデル植物の全ゲノム配列が明らかになった現在では、さまざまな植物で光抑制される遺伝子プロモーター上に DE1 が保存されていることが明らかになってきた。

一方、Pra2 タンパク質は Ypt3/Rab11 ファミリーに属するRab GTPase であることから、細胞内の特定のコンパートメントで茎伸長制御に必要な機能変化を行っていると予想された。そこで、Pra2 タンパク質の機能の一端に追及するため、分子系統解析と細胞内局在解析を行った。まず、分子系統解析により、高等植物にはヒトや酵母の 10 倍近いおよそ 25 個の Ypt3/Rab11 タンパク質が存在すること、さらに植物特有の大きなサブグループが存在することを明らかにした。すなわち、このファミリーは植物固有の輸送機能において重要な役割を果たしていることが示唆された。次に細胞分画法および GFP 融合タンパク質を用いて Pra2 タンパク質の細胞内局在を調査、Pra2 タンパク質がエンドソームやゴルジ体近傍に局在することを明らかにした。この結果から、Pra2 タンパク質はエンドソームやゴルジ体近傍での輸送に関与することで、茎伸長という植物の高次生命現象を制御していることが示唆された。

2. 葉緑体の機能構築におけるタンパク質輸送に関する研究

前述のように、光形態形成反応における葉緑体分化と光合成機能の獲得が起こるために、これに必要な遺伝子群が他に誘導される。葉緑体には約 3,000 種類を超えるタンパク質が存在すると言われているが、葉緑体ゲノムにコードされているタンパク質は 100 個程度で、残りの大部分は核ゲノムにコードされている。そのため、遺伝子発现の光誘導に応答してプログラム

図 1 光シグナルによる植物の形態制御と細胞内輸送
3. 低温応答における葉緑体タンパク質の役割に関する研究

自然界においては、春から冬への移行に伴う植物は生理機能や細胞の構造を大きく変化させ、その結果高い耐寒能力を獲得する。このような一連の变化を「低温耐性」という。低温耐性をもつ植物は、ある一定期間、凍結した温度を支持し、さらに凍結を伴った温度においても凍結耐性を示す。これは低温制御の過程において、植物は数多くの遺伝子の発現を調節し、最終的にそれらのコードするタンパク質が細胞内の各所で機能を発揮することで、低温に対する耐性を獲得していると考えられる。したがって、細胞サイズが大きく、低温下でも機能性を保持するタンパク質が低温下でも機能を保持する。しかし、このような分子機能をもつものが見つかる必要がある。

このような背景を踏まえ、筆者らは、低温下で葉緑体を守る分子機構を明らかにするため、低温耐性遺伝子を調査し、低温耐性遺伝子をコードするタンパク質の構造を解析した。Cor15aをコードする遺伝子を検出し、低温下でも機能を維持するタンパク質であることを明らかにした。また、試験管内でオートバイオフェルに用いてCor15aタンパク質の機能を調査した。その結果、低温下でも機能を維持するタンパク質が見つかった。さらに、低温下でも機能を維持するタンパク質の効果が明らかになった。したがって、低温下でも機能を維持するタンパク質が低温下でも機能を維持する。