枯草菌のクオラムセンシングフェロモンに見られる新規翻訳後修飾の解明

東北大学大学院理学研究科 助教 岡 田 正 弘

はじめに
細菌にとって自らの集団密度は重要な外的環境の一つであり、細菌は細胞密度の変化に応じて生産性、生長、増殖する生成物の性質を変える。特に、バイオフィルム形成、形質変換などさまざまな現象を引き起こす。この様に細胞密度依存的な遺伝子発現制御機構は、定数ある値の「クオラム」という単位を用いてクオラムセンシングと呼ばれる。細菌は実に単純な方式で細胞密度を監視しており、それは常に細胞外フェロモンを分泌するというのである。すなわち、細胞密度が低い場合には分泌されたフェロモンの濃度が低いが、細胞密度の増加に伴ってフェロモン濃度も上昇し、一定の閾値を超えた場合には細胞膜上のフェロモン受容体を介してクオラムセンシングが働き、様々な現象が引き起こされる（図1）。言い換えれば、細菌は細胞密度を細胞外のフェロモン濃度に置き換えて感知しているのである。この様々なクオラムセンシングによる細胞密度制御は非常に重要で、一般にその化学構造は、グラム陽性菌においてはアミノホモセリンレクトンであり、グラム陰性菌ではペプチドである。

一方、枯草菌は無毒性のグラム陽性細菌であり、その大きな特徴としてはバイオフィルム由来の形成、抗生物質の生産、DNA形質転換を行うことが挙げられるが、これらの現象はいずれもクオラムセンシングによって制御されている。このうちDNA形質転換を誘導するクオラムセンシングフェロモンがオリゴペプチドであるComXフェロモンである。枯草菌はグラム陽性菌のモイラー細菌として、細胞膜の分子伝達導学的解析が行われており、形質転換におけるComXフェロモンのシグナル伝達機構についても詳しく解析されている。それによると、まず前駆体タンパクで修飾酵素ComQによる翻訳後修飾を受けComXフェロモンとなり細胞外に分泌される。が offen して細胞密度依存的に蓄積されたComXフェロモンの濃度が閾値に達すると、転ペプチドComMを介したComP-ComA二成分制御系によって翻訳が制御される（図2）。さらに、分子生物学的考察から、ComXフェロモンは、トリプトファン残基が未知の翻訳後修飾を受けており、その修飾はシグナル生成ではないかと推定されていた。これこそが本稿の主要な内容である。新規な翻訳後修飾様式の発見の一つではあるが、ComXフェロモンの化学構造解

図2 ComXフェロモンのシグナル伝達経路

まず、細胞内前駆体タンパクComXが生産され、修飾酵素ComQによる翻訳後修飾を受け、ComXフェロモンとなり細胞外に分泌される。が offen して細胞密度依存的に蓄積されたComXフェロモンは、膜貫通型リセーサーナーゼComPの自己リセーサーゲートの開閉に伴う生合成酵素の発現を従来の二成分制御系を介してシグナルを伝達し、DNA形質転換が引き起こされる。

図1 クオラムセンシングの概要
細菌の細胞密度が低い場合には細胞外に分泌されたフェロモンの濃度も低いので何も起こらない。これに対し、細胞密度の上昇に伴って細胞外に分泌されたフェロモンの濃度も高まり、ある一定の閾値を超えた場合はクオラムセンシングが働き出し、フェロモン受容体が感応し、特定の遺伝子制御を伴うことがより形態変化などが引き起こされる。
図3 ComX_R0-E2 フェロモンの化学構造

<table>
<thead>
<tr>
<th>イソプレニル化アミノ酸</th>
<th>Cys残基*</th>
<th>Trp残基</th>
<th>(ComXフェロモン)</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td>◯</td>
<td>◯</td>
<td>(Tremorgen A-10)</td>
</tr>
<tr>
<td>未修飾</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>N4K除去</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>検針短縮</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>検針伸長</td>
<td>◯</td>
<td></td>
<td></td>
</tr>
<tr>
<td>偏高変化</td>
<td></td>
<td>◯</td>
<td></td>
</tr>
</tbody>
</table>


図4 イソプレニル化ペプチドにおける構造活性相関の比較
両修飾ペプチド共に翻訳後修飾が活性発現に必须である。しかし、システム欠損残基の場合はアミノ酸配列が重要であり、イソプレニル基の化学構造については長鎖炭素鎖があれば活性を示すことから、その役割は細胞表面へのアンカーであると考えられる。トリプトファン残基の場ではアミノ酸配列でなく、修飾トリプトファンの化学構造が重要であり、イソプレニル基が有活性体と特異的結合に関与していると考えられる。○、強い活性; □、中程度の活性; X、活性なし

フェロモンの修飾トリプトファン残基の化学構造は、インドール環の5位がガラシル化されており、さらに新たにプロリン残基の5員環が形成されているというユニークな化学構造であることが明らかとなり、トリプトファン残基における新規翻訳後修飾であるだけでなく、翻訳後修飾によるガラシル化の初の報告となった（図3）。

図5 柄草菌の菌株によるComX アミノ酸の修飾様式

で、ComX_R0-E2 フェロモンにおけるガラシル修飾が、単に細胞表面へのアンカーとしての役割だけでなく、受容体との結合に直接関与していることが強く示唆された（図4）。

さらに、他の菌株由来のComX フェロモンの化学構造の決定を行いComX フェロモンの修飾様式、トリプトファン残基の環化を伴うガラシル化とフェルシル化の2種類であることを示した（図5）。この結果から、ComX フェロモンの特異性を規定する要因は、アミノ酸配列よりもむしろイソプレニル側鎖の炭素数であると考えられた。興味深いことにグラム陰性細胞の生産するクオラムセンシングフェロモンにおいても、化学構造が全く異なっているにもかかわらず、種特異性と活性側鎖の炭素数には相関が見られる。

おわりに
以上のようにして、柄草菌のクオラムセンシングフェロモンであるComX フェロモンから見いだされたトリプトファン残基のイソプレニル化は、化学構造がユニークなだけでなく、活性発現に必須な翻訳後修飾であることが判明した。現在までにこの翻訳後修飾はComX フェロモンにおいてのみ確認されており、そのコンセンサス配列も見いだせていない。しかし、担子菌の接合系形成フェロモン中において見いだされたシステム残基のイソプレニル化は、その後普遍性が明らかになっており、柄草菌の形質転換誘導フェロモン中において見いだされたトリプトファン残基のイソプレニル化も生物界に普遍的に存在する翻訳後修飾である可能性が高いのではないかと考えている。

謝辞 本研究は主として名古屋大学大学院生命農学期間、特に活性物質化学研究室にて行われたものです。日本の農芸化学の伝統である“ものづくり”を主体として研究を展開していき、名誉ある本質を受賞できたことは筆者にとって歓喜であり、興味深いテーマを与えてくださいと終始指導をいただきたました坂神恒次教授に厚く御礼申し上げます。研究を支えてくださった小平・教授、松林嘉幸教授をはじめとするスタッフの皆様、共に研究を行った学生諸氏、共同研究者はD. Dubnau博士に感謝申し上げます。学部生時代の指導教官であり、研究室に推薦していただいた山崎正克名誉教授に厚く御礼申し上げます。現在の所属であり、引き続き研究の機会を与えられてきた東北大学大学院理学研究科有機化学第一研究室の上田・教授に厚く御礼申し上げます。最後となりましたが、本奨励賞にご推薦いただき、日本農芸化学会名古屋支部長の松本哲夫教授、日本農芸化学会東北支部長の五味増也教授、ならびにご支援いただきました諸先生方に厚く御礼申し上げます。