回顧と展望

石塚 喜明
日本農学士院会員
北海道大学名誉教授
日本農芸化学会名誉会員

大正末期に大学に入り農業の勉学に志し、半世紀を越した今日改めて農芸化学の発展の跡を眺め感慨の深いものがある。大学でまず教えられたのは“農芸化学とは農業の発展を通じ、農民の当ては人間の福祉に寄与するため現代の化学の知識を最大限に応用する学問”であった。当時の農民の姿は今日に比べてより貧しく、国もまた同様で、われわれはこの点で一つの使命感を持っていった。

農業の基礎整備に始まり優良品種の育成理論、生産資材、生産手段、収穫物の保存加工、食品としての評価と栄養等々をわめて広範囲に化学的応用が試みられた。この発達の初期段階においては研究者も少なく、一つの学会で十分その目的を達することができた。筆者は農作物の生産を専門に選んだが、本会が発足して間もないころは農芸化学会誌に投稿させていただき、またこれをを通じて多くの知識を与えられてきた。

しかし欧米から取り入れられた研究手段は帰納法を主体にし、農芸化学も解析、分析へと深く専門化して発展し、研究も従に引き継ぐ年の動きに追いついていた。それゆえの新しい農芸化学の文献を消化することで能力一杯の状態となった。その結果と学会の事務化も著しく進み、筆者の関係する分野でも重複肥料化学が独立し、その学会を今やベドロジー、土被物理、土壤微生物と、独立した学会としまいかなくともその内に集団がそれぞれ私関図を持つようになっていった。それに伴い、筆者が全部を読みかつ理解がこんだんと難しくなり、研究はますます深く細かく、農芸化学に携わる人を学びに細を穿つようになってきた。これは農芸化学会誌においても同じ傾向のことと思う。

これはまた農業全体にも当てはまることで、現在農学部を持つ大学は三、四、それにかかわらず、そこを卒業して実際の農業に従事する人はきわめて少ない。今この奨学船を1/5くらいに整理しても十分間に合うのではないという意見が行政面から出る状態となった。しかし現在の農業の技術的進歩は著しく、日本のように進んだ農業が産業として成立している背景には前述のように改めて多岐にわたり分野がそれを支えているからであり、単に農村に帰り農民に従事する人の数で農学の存在意義を判断することはその将来をも誤ることになるのではないかと思うまでもないことである。

しかしこのような状態になると農学に関連する学会も既存の概念では社会の要望に答え切れず、また学びも细分化の進むままに委ねておいてよいのかが問題となってくると思う。すなわち细分化されるほど農業の全体像を見失うばかりになり、時には自分の研究の農学における位置付け（必ずしも直接的関連性という意味ではないが）を見失いがちになる傾れが出てきた。このことは全体と部分との関係をまったく考えせる、部分とは全体があらかじめ出してくる概念であり、部分をいくら細かくなってもそれを明らかにして、それを単に機械的に集めたのでは全体像は出てこない。全体像を見失った部分像はもはやその意義はないものとなりかねないのである。結局学問が细分化されるほど、初心に帰り農業への寄与という観点は見失いだと言っておくと願うのである。

その意味において農芸化学会は本会の会誌に加え、全体像の把握を目指す“化学と植物”を発刊されたことは誠に先見の明があった。今では会誌を通じていろいろと反省させられ、また教えられる点が多く、時に重大なヒントを与えとすることがあり、常に大切に読ませていただいている。その反面、本家の農芸化学会誌も昔ととその発表の形式を変える必要性がでてくるのではないかと感じる今でもある。

1986年を迎え、21世紀も近くなってきたが、1世紀前のいわゆる世界末親と比較して今回はむしろ明るいように思う。核の悪用による人類の終末がいわれながらも
人類はそれを克服するであろうとの期待を含め、科学の進歩が明らかに積極的な 21 世紀論を生んでいるようである。食糧の面では局所的向けに飢餓の問題はあるが、純農業技術の立場からすれば手のつけられない絶望的な問題ではない所に救いを見出しがある。21 世紀論はこれからも盛んになるであろうが、農業の将来を世紀という区切りで論ずるのはあまり意味がないと思う。それは連続した流れのなかで変化していくものと思う。この見地からすればその鍵を握っているのはエネルギー問題である。

農業とは一方で太陽の光エネルギーを化学エネルギーに変える力を持つ植物の機能を利用して、他方ではその植物に最大限にその能力を発揮させるよう直接関与、多大の化石エネルギーを使う。加えて消費者の口に運ぶために輸送、貯蔵、加工、調理に多大の化石エネルギーを使う。したがってローマ・クラブの報告のように、化石エネルギー源の将来、その代替エネルギーの開発形式いかんより農業の姿も大きく変わってくると思う。現在の作物の多収品種といえば太陽からの光の受光能率を最大限に発揮できる形態能力にその特徴が置かれてきた。これには限度があり、したがって次の段階は受けたエネルギーをいかに効率よく化学エネルギーに変えるかという植物の生理的問題となる。化学反応論の知識の応用と進歩したバイオテクノロジーの活用が基本になると思う。また作物と人間は生物体利用するかは限らず、限られた部分を利用する場合が多い。そのためには特定の組織に同化産物を大量に保持させる化学反応と遺伝子の活用が大切になると思う。さらに問題なのは炭水化物の収量の増加はあまり難しくないとしてもこれを根から吸収した窒素を結び合わせ、アミノ酸、蛋白、その酵素の合成を速く行うことはさらに難しい問題がある。馬鈴薯の収量はここ 1 世紀に 4 倍近く大だが大豆は 2 倍が稀々である。農産物の貯蔵加工さらに付加価値の増加はそれに花を咲かせるものと思う。

もっとも核融合を始め、原子エネルギーの開発が進み、化石エネルギーの時代とは比較にならぬほどエネルギーやが豊富にかつ安価に利用できる時代がくるべく炭水化物も蛋白質も工場で生産され、宇宙食、忍者食ができれば、生命の維持という点では人類は農業から解放され、農芸化学の役割も本質的に変わる可能性も起こりうると思う。

しかし、智、情、意の 3 つを兼ね備えた人類はそう簡単には美しき人間性を失うとは思わないのである。それがある限りはやはり土を耕し、気候に適した植物・作物を作り、食事を楽しむという生活は 21 世紀も続くと思うし、またそれが農業の基本となることは変わりないと思うし、またそうありたいと念願している。そして農芸化学もその道に沿って素晴らしい花を咲かせてくださることを期待している。

その間の問題としては地球から食をなくすことにあると思う。そのためには大陸別に最小限の自給をはかる方向に向かうのではないかと思う。またその前提として、人種別の栄養基準を決めることができないかと考えている。今日までの栄養基準は自給中心に掲げているので、ある気候の下で、適した植物群が生まれ、それを中心とした食生活を組み上げた人類にはおおの特有の栄養基準ができているように思われるし、また個別のながらのような研究報告も出てきている。植物蛋白だけで立派に栄養を保っている人もあることを確かである。そしてこれを基礎とした大陸別の自給農業を組み立て、そのうえで大陸間のバランスを破壊せんとするようならなければならないと考える。

このように考え方をとると筆者の関心の深い生産面に限っても農芸化学に期待する所がきわめて大きく、加えては収穫の作物・生態、栄養理論の再検討に加え、化学合成、微生物工学、バイオテクノロジーの発展を通して人類の福祉の促進等々、農芸化学の将来が漸々とあるようであり、それだけ若き研究者に期待する所が大きいのである。それとともに常に人類共存の原理を支える食料を生産する農業に暖かい心を注いでくださるようお願いする次第である。