シノメニン 酸 物 語
—有機化合物とは何と面白いものか

三井 進

僕が農芸化学を選んだのは武蔵高校の化学の恩師玉村文一（第一高等学校で坂口薫一郎先生と論争を争ったと
か承っている）先生である。
「先生！ 僕は理学部の化学をやりたいと思いますが…」という間に、先生はちょっと考えて「君！ 理学
部の化学はつまらんよ。農芸化学をすすめるね…」。先生がなんで自分の出身の理学を転じて農芸を害めたのか
はおそらくなかったが、僕はその一言で農芸化学に進むことに決めたのである。

大学入学は昭和4年、たまたま2年先輩に前田司郎君
がいた。後に鈴木梅太郎理化学研究所で、アミノ
酸のみの組合せによってネズミを完全飼育することに
成功し将来を嘱望された俊才であったが、30代で夭折し
た惜しむべき方である。

前田君の尊父は有名な眼科医で、僕のキャヒはその下
で働いていた関係上、前田君のことは時々から存じあげ
ていた。たまたま前田君は藤原若次先生のいる北
里研究所でやることになっていたらしく、そこで、信じ
入ると急速に後藤先生に紹介して自分の身代わり
とし、僕は鈴木梅太郎先生直轄の卒論をやられたよ
うである。

そんなわけで、何にも知らない僕は旧制大学かか年の
第一学年のときから授業の合間、土・日・祝日、夏休
み・冬休み・第三年期の卒論と3か年を後藤先生の「シ
ノメニンの研究」の一助として手伝いをすることにな
ったのである。後藤先生は東大の非常勤講師として長く
生物有機化学の講義をされ、4～5年生生物化学教室
の教授として停年退官され、栃木大学教授・日本学士院
会員として重きをなされた方であることは周知のとおり
であるが、以上述べたようなまったく偶然のprivate の
事情から僕はシノメニン研究のお手伝いを学生3年間
続けるハムになったのである。

しかし僕はここで有機化学のイロハから離れられるこ
とになる。シノメニン Sinomenin はフォーラスリノを
核とする、N-methyl 1 個を持ったオルソフラン族のアルカ
ロイドで、岡田の山野にとくに多く自生する「おおつづ
らぬじ」の根の内に多量に蓄積される物質で、吉田神
経痛・リウマチなどに有効であるとされていた。

先生の仕事場北里研究所はどうやるか貧乏研究所で専従
職員がきわめて少ない。先生にもまった一人の助手しか
いなかったのであるが、先生は東大の生物化学の卒論の
学生を何人か毎年つれて来て終始一貫シノメニンの研究
を続けられたのである。

その3年間に後藤先生との共著で僕の名前が入ってい
る論文は次の3つである。

（1） On Reduction of Sinomenin and Dihydrosi
nomenin with Na-Amalgam. Bull. C. S. J.,
6, 282 (1930).

（2） Über die Identität von β-Tetrahydrodesoxy-
codein und Dihydrotobecodin. Bull. C. S.
J., 6, 33 (1931).

（3） Über den Hofmanschen Abbau des Sinome-
nin-hydratidioxims. Bull. C. S. J., 6, 197
(1931).

（4） Über die Bromierung von Sinomenin und
seinen Derivaten, Dihydromeladin aus Si-
nomenin. J. Liebigs Ann. Chem., 489, 87
(1931).

（5） Über den Hofmanschen Abbau von 1-Bro-
mosineminenondioxim und die Bromierung
von Sinomeninonfurazanderivaten. Bull. C.
S. J., 7, 223 (1932).

Chem., 489, 87 (1931).

学部学生3年の間にこんなに正式な論文を出した人は
おそらく農芸化学のみならず東大中にも珍しいことだと

31
思いますが（新制大学院の時代は別です）。今から考えますとまったくの手弁当ではとんどの休みをつぶして何で僕はそんなに働いたのかどうかわかりません。まあこれは僕の生まれつきの性分なのかしろありませんね。

さて話はこのなかで一つ「かつてほど有機化学とは面白いもんだ」と強烈な印象を受けたことがある。それは(6)のÜber Sinomeninsäure。

上図のSinomenin のフェナノスレン第3核を酸化で開いて（Ringöffnung）みてくれないかという指示が先生からあり、早速文献を調べてみると似たようなDiketonの酸化反応が見つかったがOriginalはフランス語である。幸い僕は高校の頃アテネ・フランスに長く通ったことがあるので英字をひければなんとかかかわった。

さてその実験はある日曜日、研究室には人影もないというような所で僕一人で始めたのである。

Sinomenin は N- CH₂ であるbase だからEissigssäureにはよく溶ける。このものにPerhydro (30% H₂O₂、当時はドイツ製品)を加えKolbenに入れてRückflusskühler 上に立て、下からBunsen gas burner で徐々に加熱し始めました。うまくけつけないがなあとなんだに温めていくKolbenを見て見ているうちに、突然Kolbenの中央がボンボッポと爆音を始めたのである。ザックザックと結晶できちんものいかからもとくにKolbenのなかで起きて、おそらくこれがSiedensteinの役目をしたんでしょう。Kolbenの内容物はあたかも火山噴火のごとくRückflusskühlerのなかに飛び上がりは外に出てくるという騒ぎになりました。あたりに人影はない。僕はあわててgas burnerを消して内容の冷却するのを待った。

「さてと...」今でSinomenin のDerivatenを抜ききましたがこんな体験は初めてだった。早速Eissigを減圧蒸留で除去し、残りのものをMetanolでdigerierenするとほとんどの残渣が結晶状に回収された。

検鏡すると結晶はdicke Prisemen、何とともあれSchmelzpunktを測らねばならない。当時のSchmelzpunktの測り方は結晶の粉末を毛細管の一端を閉じたものの中に入れて、このものを300℃以上の暖房箱を差し込んだ長方円底のKolbenに濃硫酸を満たしたものなかで寒天計下部の水銀の所にちょっとつける。そしてこの円底をBunsen gas burner でゆっくり加熱しながら温度を上げていき、毛細管の内容物がschmelzeしたときの温度を目で読みとるというのであった。今どんな方法が使われているかは知らないけれど、この方法はよく考えてみると物験千万の方法であって、万ーKolbenにピッでも入れるのならまともに熱濃硫酸を頭かからぶるこことになりかねないしろものであった。

さて今までつつきねてきたSinomenin関係の化合物は160〜180℃くらいにSchmelzpunktが分布していたの、この物質はいつになっても溶けそうにない。200〜250℃、まだ何ともない。しかし濃硫酸の自己が立ちこみ始め少し恐ろしくなってきたがいまさらやるわけにもいかず、Bunsen burnerをできるだけ小さくして、それこそKolbenの底をなめるようにして温めていゆうち291℃。まさに濃硫酸沸とう直前に至って、突然毛細管の中が真黒になるにとどまらずにブツと吹き上った。SchmelzpunktなしにZerstörungpunkteである。

Diketon がDicarbonsäureに変わる。SinomeninはN- NH₂ 1個のbase だったがDicarbonsäureが加わる全体として酸化物質になったがゆえに急速にEissigssäureに溶けなくなった。その結晶の晶出が突然していて僕を仰天させたのだと思われる。Schmelzpunkt（Zersetzung）が100℃以上も上ったのおそらく分子中のbase とacidのバランスで結晶の安定化が進んだためだろうとそのときは想像した。

早速精製した物質をFregiの元素分析を自分でやってみると実験値と理論値はビタリと一致する。

先々日僕は有機化学の構造式を先生方が1枚の紙の上に書いて教えてくれたが、実際の元素の配列はそんな簡単なものではあるまいとおおいに疑いを持っていたのであるが、この程度の構造式の物質ならば立派に紙に書いた平面上で説明できる。もとより現在NMRやX Ray diffraction patternには何万、何10万という分子量の有機化合物の立体構造も解釈できていることは知識しているが。
何にしてもこの base が acid に変わる有機物の変化、それにともなう溶解度や、化学性の変化またそれに対応する構造式の実験結果の信頼性など、ピックリー仰天した独り実験の体験であるほど有機化学というものは面白いものなんだという実感をヒンジンと感じた次第である。しかしそこで僕の学生生活も終り、長年にわたって有機化学とご縁がなくなることになった。

「卒後その方面の研究をなぜ続けなかったかって？...」理由は簡単である。後藤先生や鈴木梅太郎先生の研究室にはサラリーを出す position の余りがなく、僕の家は貧乏人の子沢山。世は不況の怪中、そこで成績の最優秀なものだけ全国帝国大学から新人を採用していた農林省農試験場（北区西ヶ原所在・古在総長が総長だったことのある所、現在は筑波移転して名称も機構も変っている）で採用してくれたまでのことである。

そこでまた幸運なことに僕は土壤肥料学科の近世の大家塚入松三郎農芸化学部長（後に東大教授、日本学士院議員、文化功労者）の手ほどきを受け、無機化学・分析化学の基礎をやり、それから長年土壤や肥料・植物栄養の仕事に取り組むことになり、昭和 7 年から昭和 23 年まで農試験場（土壤肥科部長を 6 年）、ついで母校の東大植物栄養・肥料学教室に進められ、そこに約 23 年間、昭和 45 年定年退職までその方面を専攻することになった次第である。

まったく人間の運命何よりそれを感じる。『人間万事塞翁が馬』僕の学士院賞は始め塩入学士院会員が説明されましたが途中病没、ついでこれを後藤会員がバトンタッ チして昭和 42 年に頂戴いたしました。そのお蔭もあってでしょう。目下日本学士院会員に選ばれ、日本の鏡学に互いに後輩や弟子を勧めつつ、日々を楽しくら しております。まことに有難いことですが、ここに遠んで両先生のご冥福を祈るとともに、60 周年を迎えた日本農芸化学会の今後ますますのご発展を心からお祈り申 し上げます。どうもいささか手前味噌に過ぎた話になり申し訳ありません。