ガ類性フェロモン産生の分子機構に関する生物有機化学的研究

独立行政法人理化学研究所基幹研究部門 主任研究員 松本正吾

オオスのガが同種のメスのガに引きつけられる現象は古くから知られており、フォールブルは「昆虫記」の中で、メスの分泌する因子によりオオスが誘引されることを記述した。この事実に基づき、Butenandt(独)はカイコガを用いてその化学的実体解明に着手し、20年を費やした1959年に初めて、その性誘引物質としてボンピコールの化学構造を明らかにした。ButenandtとKarlsonはこの時代、ボンピコールのように同種の他の個体に作用する生理活性物質を、ギリシャ語の"pherine（運ぶ）とhormon（興奮させる）"とんでpheromone（フェロモン）と命名した。それ以降、特異的かつ強力な生理活性物質であるフェロモンの化学的実体解明は、生理学的・生態学的興味とも相まって、多くの研究者、生物学者をひきこめてきた。特に、ガ類昆虫の雌性フェロモンは、主要な農業害虫が瞬時に気づき、これに500万以上の数のフェロモンが同定されている。しかしながら、これら昆虫の種特異的なフェロモンがどのような分子基盤に基づくか、どのように調節機構と機能分子のカスケードを経て産生されるのか、という基礎的な問題は明確には理解されていない。

これまで私は、フェロモン研究において特別な意味をもつカイコガをモデルとして、ガ類性フェロモン産生の分子メカニズムの全体像を解明を目指してきた。その過程で、フェロモン腺細胞では飼育前にボンピコール産生に向けたさまざまなイベントが協働的かつダイナミックに進行することを見出した。この過程をフェロモネージョンと名づけるとともに、個々のイベントの成り立ちを分子レベルで解明することを試みてきた。そして、有機化学、生化学、分子生物学のさまざまな手法を駆使した解析を包括的に進め、その概念を明らかにした。以下、私が携わった研究の主な成果を概観する。

1. 脂肪酸の化学的実体とその役割
カイコガのフェロモン環境では、羽化後2日目前より細胞レベルの大量の脂肪酸の蓄積が起こり、さまざまなフェロモンの種特異的な分子の転写活性化が起こる。一方、化粧後に複合体ポリタンPBAN（Pheromone Biosynthesis Activating Neuropeptide）の外部刺激をフェロモン腺が受容すると、細胞外Ca²⁺の細胞内流し、脂肪酸の分解（リポソームス）が連動して進行し、ボンピコールが合成される。その後、フェロモン細胞に特異的な脂肪酸の役割を明確にするため、その構成成分を単離・構造解析した結果、脂肪酸の主成分は、ボンピコール前駆体を主成分構成脂肪酸とするさまざまな分子種からなるドライオイル成分であり、脂肪酸がPBAN刺激に応答してボンピコール前駆体を切り出すフェロモン前駆体の静脈組織を構成していることを明らかにした。

2. ポンピコール合成酵素遺伝子の単離
ボンピコール産生の分子基盤をそこにかかわるタンパク質分子遺伝子の同定を目標として、フェロモン腺で発現する遺伝子の解析を進めた。まず、カイコガ綱系系統_listingのフェロモン腺より平発化cDNAライブラリを作成し、2000クローンをカクテク化することでフェロモン腺EST（Expressed Sequence Tag）データベースを構築した。さらに、ESTクローンの発現プロフィールより数多くのフェロモン特異的遺伝子を浮き彫りにした。これらの遺伝子のなかから、ユニークな2種類のボンピコール合成酵素遺伝子pdesat1およびpgfARの同定に成功した。pdesat1は脂肪酸不飽和化酵素で、飽和脂肪酸（パルミチン酸）へ2段階の反応で共役ジェンを導入するbifunctionalな新規の不飽和化酵素であり、われわれの発表を基に、ガ類における多様なフェロモン特異的multifunctional不飽和化酵素の存在が明らかとなった。一方、pgfARは動物から初めて同定された脂肪酸アシル化酵素で、われわれの発表を契機に、ヒト、マウスにおける皮脂フック合成にかかわる長鎖脂肪酸アシル化酵素が同定された。また、pgfARの酵素に対する機能発現解析において、本酵素遺伝子を導入した遺伝子転写酵母がカイコガの成長を誘導することを明らかにした。本研究は、フェロモン合成酵素遺伝子を形質転換した異種生物による害虫の交雑（観察実験）操盤という応用面での可能性をも示すこととなった。

3. PBAN受容体遺伝子の単離とフェロモン腺でのRNAi法の確立
ガ類性フェロモン産生において中心的役割をもつPBAN受容体（PBANR）遺伝子は、極圧プライマーを用いたRT-PCRにより単離し、PBANR遺伝子が乳頭の生理活性物質であるニューロメキシU受容体ファミリーに属する7回貫通型のGタンパク質結合型受容体（GPCR）であることを示した。さらに、遺伝子機能の新たな解析法として、カイコガ個体を用いたin vivoでのRNA干渉法を確立し、この方法を用いてPBAN受容体を含む5種類のフェロモン特異的遺伝子（pdesat1, pgACBP, pgACBP, pgfAR, PBANR）のボンピコール産生過程における役割をin vivoで実証した。

4. PBAN刺激に伴う細胞内シグナリングのカスクード
PBAN刺激の際に、フェロモン腺の培養系ではいずれのガにおいても細胞外Ca²⁺の存在が必須であるから、PBANシグナリングは細胞外からのCa²⁺の流入を伴うものと考えられていたが、この事実は直接証明されていなかった。われわれはボンピコール産生細胞における蛻光Ca²⁺イメージングを行い、PBAN刺激に伴う細胞外Ca²⁺の動員を直観的にとらえることに成功した。さらに、生化学的、分子生物学的、薬理学的手法を用いてPBAN受容体を介したシグナリング系を解析し、PBAN刺激が、三量体型Gタンパク質Gq, イノシトール1,4,5-トリアリン酸 (IP₃)を介したカノニカル経路により、細胞体Ca²⁺ストアの触媒に応答して活性化されるストア作動性
Ca$^{2+}$チャネルを開口することを示した。
以上の研究成果を含め、これまでのわれわれの研究から、性フェロモン合成のシグナルであるPBANの受容から性フェロモン（ポンピゴール）生成に至る一連の過程が初めて明らかになった（図参照）。

ガ類性フェロモンの産生機構に関する研究は、1980年代初頭よりRoelofsら（米国）が始めた合成研究に加え、1989年に鈴木ら（東大）によるPBANの一次構造決定が契機となり、主にカイコガやタバコガ類を用いて進められた。カイコガは大型のフェロモン腺と比較的シングナル合成経路をもつため、実験系としての利点が多く、われわれは脂肪酸の役割やポンピゴール合成酵素（pgdesa1, pgFAR）、PBAN受容体というキーコンの機能分子のすべてを解明することに成功した。また、われわれが確立したカイコガ個体でのRNAi法は、個々の分子のフェロモン系での機能をin vivoで実証するうえで、極めて重要な役割を果たした。さらに、最近の研究から、われわれはストア作動性Ca$^{2+}$チャネル（SOC channel）を介したPBANの細胞内シグナル伝達の流れを解明することにより、PBANシグナルが最終的にリン酸化、脱リン酸化を介してリポリシスやアシル基の還元過程を活性化する機構を示した。ゲノムが解読され、さまざまな遺伝子情報が人手できるカイコガは、今日、ガ類昆虫の類のモデル昆虫となっており、本研究はその特性を活かしたものといえる。

図1 カイコガ性フェロモン産生の分子機構

本研究は、独立行政法人理化学研究所基幹研究所で行ったものであり、本研究の推進にあたりましたAdrien Fonagy（ハンガリー科学アカデミー）、小澤理香（現 京大）、吉澤豊司（現 佐賀大）、本賢一（理研）、大西敬（理研）、J. Joe Hull（現 ワイオミング大）各氏の協力と努力に感謝申し上げます。さらに、学術的な協力を受けた基幹研究所の阿津澤浩二、栗原政明氏をはじめ、研究員、技師、大学院生、かつて在籍した多くの方々ならびに、理研内および他研究機関の数多くの共同研究者の方々に厚く御礼申し上げます。最後に、学生時代より長年にわたり温かい指導をいただきました東京大学名誉教授 田村三郎先生、同 鈴木昭恵先生、東京大学大学院農学研究科 学研究科教授 長澤寛道先生に深く感謝いたします。